Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Hum Reprod Open ; 2024(2): hoae017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699533

RESUMO

BACKGROUND: The widespread interest in male reproductive health (MRH), fueled by emerging evidence, such as the global decline in sperm counts, has intensified concerns about the status of MRH. Consequently, there is a pressing requirement for a strategic, systematic approach to identifying critical questions, collecting pertinent information, and utilizing these data to develop evidence-based strategies. The methods for addressing these questions and the pathways toward their answers will inevitably vary based on the variations in cultural, geopolitical, and health-related contexts. To address these issues, a conjoint ESHRE and Male Reproductive Health Initiative (MRHI) Campus workshop was convened. OBJECTIVE AND RATIONALE: The three objectives were: first, to assess the current state of MRH around the world; second, to identify some of the key gaps in knowledge; and, third, to examine how MRH stakeholders can collaboratively generate intelligent and effective paths forward. SEARCH METHODS: Each expert reviewed and summarized the current literature that was subsequently used to provide a comprehensive overview of challenges related to MRH. OUTCOMES: This narrative report is an overview of the data, opinions, and arguments presented during the workshop. A number of outcomes are presented and can be summarized by the following overarching themes: MRH is a serious global issue and there is a plethora of gaps in our understanding; there is a need for widespread international collaborative networks to undertake multidisciplinary research into fundamental issues, such as lifestyle/environmental exposure studies, and high-quality clinical trials; and there is an urgent requirement for effective strategies to educate young people and the general public to safeguard and improve MRH across diverse population demographics and resources. LIMITATIONS REASONS FOR CAUTION: This was a workshop where worldwide leading experts from a wide range of disciplines presented and discussed the evidence regarding challenges related to MRH. While each expert summarized the current literature and placed it in context, the data in a number of areas are limited and/or sparse. Equally, important areas for consideration may have been missed. Moreover, there are clear gaps in our knowledge base, which makes some conclusions necessarily speculative and warranting of further study. WIDER IMPLICATIONS: Poor MRH is a global issue that suffers from low awareness among the public, patients, and heathcare professionals. Addressing this will require a coordinated multidisciplinary approach. Addressing the significant number of knowledge gaps will require policy makers prioritizing MRH and its funding. STUDY FUNDING/COMPETING INTERESTS: The authors would like to extend their gratitude to ESHRE for providing financial support for the Budapest Campus Workshop, as well as to Microptic S.L. (Barcelona) for kindly sponsoring the workshop. P.B. is the Director of the not-for-profit organization Global Action on Men's Health and receives fees and expenses for his work, (which includes the preparation of this manuscript). Conflicts of interest: C.J.D.J., C.L.R.B., R.A.A., P.B., M.P.C., M.L.E., N.G., N.J., C.K., AAP, M.K.O., S.R.-H., M.H.V.-L.: ESHRE Campus Workshop 2022 (Travel support-personal). C.J.D.J.: Cambridge University Press (book royalties-personal). ESHRE Annual Meeting 2022 and Yale University Panel Meeting 2023 (Travel support-personal). C.L.R.B.: Ferring and IBSA (Lecture), RBMO editor (Honorarium to support travel, etc.), ExSeed and ExScentia (University of Dundee), Bill & Melinda Gates Foundation (for research on contraception). M.P.C.: Previously received funding from pharmaceutical companies for health economic research. The funding was not in relation to this work and had no bearing on the contents of this work. No funding from other sources has been provided in relation to this work (funding was provided to his company Global Market Access Solutions). M.L.E.: Advisor to Ro, Doveras, Next, Hannah, Sandstone. C.K.: European Academy of Andrology (Past president UNPAID), S.K.: CEO of His Turn, a male fertility Diagnostic and Therapeutic company (No payments or profits to date). R.I.M.: www.healthymale.org.au (Australian Government funded not for profit in men's health sector (Employed as Medical Director 0.2 FET), Monash IVF Pty Ltd (Equity holder)). N.J.: Merck (consulting fees), Gedeon Richter (honoraria). S.R.-H.: ESHRE (Travel reimbursements). C.N.: LLC (Nursing educator); COMMIT (Core Outcomes Measures for Infertility Trials) Advisor, meeting attendee, and co-author; COMMA (Core Outcomes in Menopause) Meeting attendee, and co-author; International Federation of Gynecology and Obstetrics (FIGO) Delegate Letters and Sciences; ReproNovo, Advisory board; American Board of Urology Examiner; American Urological Association Journal subsection editor, committee member, guidelines co-author Ferring Scientific trial NexHand Chief Technology Officer, stock ownership Posterity Health Board member, stock ownership. A.P.: Economic and Social Research Council (A collaborator on research grant number ES/W001381/1). Member of an advisory committee for Merck Serono (November 2022), Member of an advisory board for Exceed Health, Speaker fees for educational events organized by Mealis Group; Chairman of the Cryos External Scientific Advisory Committee: All fees associated with this are paid to his former employer The University of Sheffield. Trustee of the Progress Educational Trust (Unpaid). M.K.O.: National Health and Medical Research Council and Australian Research Council (Funding for research of the topic of male fertility), Bill and Melinda Gates Foundation (Funding aimed at the development of male gamete-based contraception), Medical Research Future Fund (Funding aimed at defining the long-term consequences of male infertility). M.H.V.-L.: Department of Sexual and Reproductive Health and Research (SRH)/Human Reproduction Programme (HRP) Research Project Panel RP2/WHO Review Member; MRHI (Core Group Member), COMMIT (member), EGOI (Member); Human Reproduction (Associate Editor), Fertility and Sterility (Editor), AndroLATAM (Founder and Coordinator).

2.
Environ Health Perspect ; 132(1): 17008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38294233

RESUMO

BACKGROUND: The organochlorine dichlorodiphenyltrichloroethane (DDT) is banned worldwide owing to its negative health effects. It is exceptionally used as an insecticide for malaria control. Exposure occurs in regions where DDT is applied, as well as in the Arctic, where its endocrine disrupting metabolite, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) accumulates in marine mammals and fish. DDT and p,p'-DDE exposures are linked to birth defects, infertility, cancer, and neurodevelopmental delays. Of particular concern is the potential of DDT use to impact the health of generations to come via the heritable sperm epigenome. OBJECTIVES: The objective of this study was to assess the sperm epigenome in relation to p,p'-DDE serum levels between geographically diverse populations. METHODS: In the Limpopo Province of South Africa, we recruited 247 VhaVenda South African men and selected 50 paired blood serum and semen samples, and 47 Greenlandic Inuit blood and semen paired samples were selected from a total of 193 samples from the biobank of the INUENDO cohort, an EU Fifth Framework Programme Research and Development project. Sample selection was based on obtaining a range of p,p'-DDE serum levels (mean=870.734±134.030 ng/mL). We assessed the sperm epigenome in relation to serum p,p'-DDE levels using MethylC-Capture-sequencing (MCC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq). We identified genomic regions with altered DNA methylation (DNAme) and differential enrichment of histone H3 lysine 4 trimethylation (H3K4me3) in sperm. RESULTS: Differences in DNAme and H3K4me3 enrichment were identified at transposable elements and regulatory regions involved in fertility, disease, development, and neurofunction. A subset of regions with sperm DNAme and H3K4me3 that differed between exposure groups was predicted to persist in the preimplantation embryo and to be associated with embryonic gene expression. DISCUSSION: These findings suggest that DDT and p,p'-DDE exposure impacts the sperm epigenome in a dose-response-like manner and may negatively impact the health of future generations through epigenetic mechanisms. Confounding factors, such as other environmental exposures, genetic diversity, and selection bias, cannot be ruled out. https://doi.org/10.1289/EHP12013.


Assuntos
DDT , Diclorodifenil Dicloroetileno , Epigenoma , Sêmen , Humanos , Masculino , Estudos Transversais , DDT/toxicidade , Diclorodifenil Dicloroetileno/toxicidade , Inuíte , África do Sul/epidemiologia , Espermatozoides , População Negra
3.
Nat Rev Urol ; 21(2): 102-124, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37828407

RESUMO

Currently, most men with infertility cannot be given an aetiology, which reflects a lack of knowledge around gamete production and how it is affected by genetics and the environment. A failure to recognize the burden of male infertility and its potential as a biomarker for systemic illness exists. The absence of such knowledge results in patients generally being treated as a uniform group, for whom the strategy is to bypass the causality using medically assisted reproduction (MAR) techniques. In doing so, opportunities to prevent co-morbidity are missed and the burden of MAR is shifted to the woman. To advance understanding of men's reproductive health, longitudinal and multi-national centres for data and sample collection are essential. Such programmes must enable an integrated view of the consequences of genetics, epigenetics and environmental factors on fertility and offspring health. Definition and possible amelioration of the consequences of MAR for conceived children are needed. Inherent in this statement is the necessity to promote fertility restoration and/or use the least invasive MAR strategy available. To achieve this aim, protocols must be rigorously tested and the move towards personalized medicine encouraged. Equally, education of the public, governments and clinicians on the frequency and consequences of infertility is needed. Health options, including male contraceptives, must be expanded, and the opportunities encompassed in such investment understood. The pressing questions related to male reproductive health, spanning the spectrum of andrology are identified in the Expert Recommendation.


Assuntos
Infertilidade Masculina , Humanos , Feminino , Criança , Masculino , Infertilidade Masculina/epidemiologia , Infertilidade Masculina/etiologia , Fertilidade , Técnicas de Reprodução Assistida , Saúde do Homem , Morbidade
4.
Nat Commun ; 14(1): 2142, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059740

RESUMO

Although more studies are demonstrating that a father's environment can influence child health and disease, the molecular mechanisms underlying non-genetic inheritance remain unclear. It was previously thought that sperm exclusively contributed its genome to the egg. More recently, association studies have shown that various environmental exposures including poor diet, toxicants, and stress, perturbed epigenetic marks in sperm at important reproductive and developmental loci that were associated with offspring phenotypes. The molecular and cellular routes that underlie how epigenetic marks are transmitted at fertilization, to resist epigenetic reprogramming in the embryo, and drive phenotypic changes are only now beginning to be unraveled. Here, we provide an overview of the state of the field of intergenerational paternal epigenetic inheritance in mammals and present new insights into the relationship between embryo development and the three pillars of epigenetic inheritance: chromatin, DNA methylation, and non-coding RNAs. We evaluate compelling evidence of sperm-mediated transmission and retention of paternal epigenetic marks in the embryo. Using landmark examples, we discuss how sperm-inherited regions may escape reprogramming to impact development via mechanisms that implicate transcription factors, chromatin organization, and transposable elements. Finally, we link paternally transmitted epigenetic marks to functional changes in the pre- and post-implantation embryo. Understanding how sperm-inherited epigenetic factors influence embryo development will permit a greater understanding related to the developmental origins of health and disease.


Assuntos
Epigênese Genética , Epigenoma , Animais , Masculino , Sêmen , Espermatozoides/metabolismo , Metilação de DNA , Desenvolvimento Embrionário/genética , Mamíferos
6.
Front Toxicol ; 4: 881622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238601

RESUMO

Persistent organic pollutants (POPs) are ubiquitous in the environment, which is of concern since they are broadly toxic for wildlife and human health. It is generally accepted that maternal prenatal folic acid supplementation (FA) may beneficially impact offspring development, but it has been recently shown that the father's exposures also influence the health of his offspring. Bone is an endocrine organ essential for whole-body homeostasis and is susceptible to toxicants. Herein, we tested the hypotheses that prenatal paternal exposure to POPs induces developmental bone disorders in fetuses across multiple generations and that FA supplementation attenuates these disorders. We used a four-generation rat model, in which F0 founder females were divided into four treatment groups. F0 females were gavaged with corn oil or an environmentally-relevant POPs mixture and fed either a control diet (2 mg FA/kg), or FA supplemented diet (6 mg FA/kg) before mating and until parturition (four treatments in total). After the birth of the F1 litters, all F0 females and subsequent generations received the FA control diet. Staining with alcian blue and alizarin red S of male and female fetal skeletons was performed at Gestational Day 19.5. Paternal direct and ancestral exposure to POPs delayed bone ossification and decreased the length of long limb bones in fetuses. Maternal FA supplementation did not counteract the POPs-associated delayed fetal ossification and reduced long bone length. In conclusion, prenatal paternal POPs exposure causes developmental bone abnormalities over multiple generations, which were not corrected by maternal FA supplementation.

7.
Am J Clin Nutr ; 115(6): 1612-1625, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441210

RESUMO

BACKGROUND: Intrauterine exposure to maternal vitamin D status <50 nmol/L of serum 25-hydroxyvitamin D [25(OH)D] may adversely affect infant body composition. Whether postnatal interventions can reprogram for a leaner body phenotype is unknown. OBJECTIVES: The primary objective was to test whether 1000 IU/d of supplemental vitamin D (compared with 400 IU/d) improves lean mass in infants born with serum 25(OH)D <50 nmol/L. METHODS: Healthy, term, breastfed infants (Montréal, Canada, March 2016-2019) were assessed for serum 25(OH)D (immunoassay) 24-36 h postpartum. Infants with serum 25(OH)D <50nmol/L at 24-36 h were eligible for the trial and randomly assigned at baseline (1 mo postpartum) to 400 (29 males, 20 females) or 1000 IU/d (29 males, 20 females) of vitamin D until 12 mo. Infants (23 males, 18 females) with 25(OH)D ≥50 nmol/L (sufficient) formed a nonrandomized reference group provided 400 IU/d. Anthropometry, body composition (DXA), and serum 25(OH)D concentrations were measured at 1, 3, 6, and 12 mo. RESULTS: At baseline, mean ± SD serum 25(OH)D concentrations in infants allocated to the 400 and 1000 IU/d vitamin D groups were 45.8 ± 14.1 and 47.6 ± 13.4, respectively; for the reference group it was 69.2 ± 16.4 nmol/L. Serum 25(OH)D concentration increased on average to ≥50 nmol/L in the trial groups at 3-12 mo. Lean mass varied differently between groups over time; at 12 mo it was higher in the 1000 IU/d vitamin D group than in the 400 IU/d group (mean ± SD: 7013 ± 904.6 compared with 6690.4 ± 1121.7 g, P = 0.0428), but not the reference group (mean ± SD: 6715.1 ± 784.6 g, P = 0.19). Whole-body fat mass was not different between the groups over time. CONCLUSIONS: Vitamin D supplementation (400 or 1000 IU/d) during infancy readily corrects vitamin D status, whereas 1000 IU/d modestly increases lean mass by 12 mo. The long-term implications require further research. This trial was registered at clinicaltrials.gov as NCT02563015.

8.
Mol Metab ; 59: 101463, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183795

RESUMO

OBJECTIVE: Parental environmental exposures can strongly influence descendant risks for adult disease. How paternal obesity changes the sperm chromatin leading to the acquisition of metabolic disease in offspring remains controversial and ill-defined. The objective of this study was to assess (1) whether obesity induced by a high-fat diet alters sperm histone methylation; (2) whether paternal obesity can induce metabolic disturbances across generations; (3) whether there could be cumulative damage to the sperm epigenome leading to enhanced metabolic dysfunction in descendants; and (4) whether obesity-sensitive regions associate with embryonic epigenetic and transcriptomic profiles. Using a genetic mouse model of epigenetic inheritance, we investigated the role of histone H3 lysine 4 methylation (H3K4me3) in the paternal transmission of metabolic dysfunction. This transgenic mouse overexpresses the histone demethylase enzyme KDM1A in the developing germline and has an altered sperm epigenome at the level of histone H3K4 methylation. We hypothesized that challenging transgenic sires with a high-fat diet would further erode the sperm epigenome and lead to enhanced metabolic disturbances in the next generations. METHODS: To assess whether paternal obesity can have inter- or transgenerational impacts, and if so to identify potential mechanisms of this non-genetic inheritance, we used wild-type C57BL/6NCrl and transgenic males with a pre-existing altered sperm epigenome. To induce obesity, sires were fed either a control or high-fat diet (10% or 60% kcal fat, respectively) for 10-12 weeks, then bred to wild-type C57BL/6NCrl females fed a regular diet. F1 and F2 descendants were characterized for metabolic phenotypes by examining the effects of paternal obesity by sex, on body weight, fat mass distribution, the liver transcriptome, intraperitoneal glucose, and insulin tolerance tests. To determine whether obesity altered the F0 sperm chromatin, native chromatin immunoprecipitation-sequencing targeting H3K4me3 was performed. To gain insight into mechanisms of paternal transmission, we compared our sperm H3K4me3 profiles with embryonic and placental chromatin states, histone modification, and gene expression profiles. RESULTS: Obesity-induced alterations in H3K4me3 occurred in genes implicated in metabolic, inflammatory, and developmental processes. These processes were associated with offspring metabolic dysfunction and corresponded to genes enriched for H3K4me3 in embryos and overlapped embryonic and placenta gene expression profiles. Transgenerational susceptibility to metabolic disease was only observed when obese F0 had a pre-existing modified sperm epigenome. This coincided with increased H3K4me3 alterations in sperm and more severe phenotypes affecting their offspring. CONCLUSIONS: Our data suggest sperm H3K4me3 might serve as a metabolic sensor that connects paternal diet with offspring phenotypes via the placenta. This non-DNA-based knowledge of inheritance has the potential to improve our understanding of how environment shapes heritability and may lead to novel routes for the prevention of disease. This study highlights the need to further study the connection between the sperm epigenome, placental development, and children's health. SUMMARY SENTENCE: Paternal obesity impacts sperm H3K4me3 and is associated with placenta, embryonic and metabolic outcomes in descendants.


Assuntos
Histonas , Lisina , Animais , Cromatina/metabolismo , Metilação de DNA , Feminino , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Placenta/metabolismo , Gravidez , Espermatozoides/metabolismo
9.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902009

RESUMO

Concordant transcriptional regulation can generate multiple gene products that collaborate to achieve a common goal. Here we report a case of concordant transcriptional regulation that instead drives a single protein to be produced in the same cell type from divergent promoters. This gene product-the RHOX5 homeobox transcription factor-is translated from 2 different mRNAs with different 5' untranslated regions (UTRs) transcribed from alternative promoters. Despite the fact that these 2 promoters-the proximal promoter (Pp) and the distal promoter (Pd)-exhibit different patterns of tissue-specific activity, share no obvious sequence identity, and depend on distinct transcription factors for expression, they exhibit a remarkably similar expression pattern in the testes. In particular, both depend on androgen signaling for expression in the testes, where they are specifically expressed in Sertoli cells and have a similar stage-specific expression pattern during the seminiferous epithelial cycle. We report evidence for 3 mechanisms that collaborate to drive concordant Pp/Pd expression. First, both promoters have an intrinsic ability to respond to androgen receptor and androgen. Second, the Pp acts as an enhancer to promote androgen-dependent transcription from the Pd. Third, Pd transcription is positively autoregulated by the RHOX5 protein, which is first produced developmentally from the Pp. Together, our data support a model in which the Rhox5 homeobox gene evolved multiple mechanisms to activate both of its promoters in Sertoli cells to produce Rhox5 in an androgen-dependent manner during different phases of spermatogenesis.


Assuntos
Androgênios/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Regiões Promotoras Genéticas , Células de Sertoli/metabolismo , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Animais , Metilação de DNA , Genes Homeobox , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/metabolismo , Isoformas de Proteínas , Receptores Androgênicos/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogênese , Testículo/metabolismo , Fatores de Transcrição/metabolismo
10.
Epigenomes ; 5(2)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968297

RESUMO

Due to the grasshopper effect, the Arctic food chain in Canada is contaminated with persistent organic pollutants (POPs) of industrial origin, including polychlorinated biphenyls and organochlorine pesticides. Exposure to POPs may be a contributor to the greater incidence of poor fetal growth, placental abnormalities, stillbirths, congenital defects and shortened lifespan in the Inuit population compared to non-Aboriginal Canadians. Although maternal exposure to POPs is well established to harm pregnancy outcomes, paternal transmission of the effects of POPs is a possibility that has not been well investigated. We used a rat model to test the hypothesis that exposure to POPs during gestation and suckling leads to developmental defects that are transmitted to subsequent generations via the male lineage. Indeed, developmental exposure to an environmentally relevant Arctic POPs mixture impaired sperm quality and pregnancy outcomes across two subsequent, unexposed generations and altered sperm DNA methylation, some of which are also observed for two additional generations. Genes corresponding to the altered sperm methylome correspond to health problems encountered in the Inuit population. These findings demonstrate that the paternal methylome is sensitive to the environment and that some perturbations persist for at least two subsequent generations. In conclusion, although many factors influence health, paternal exposure to contaminants plays a heretofore-underappreciated role with sperm DNA methylation contributing to the molecular underpinnings involved.

11.
Cell Rep ; 36(3): 109418, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289352

RESUMO

The paternal environment has been linked to infertility and negative outcomes. Such effects may be transmitted via sperm through histone modifications. To date, in-depth profiling of the sperm chromatin in men has been limited. Here, we use deep sequencing to characterize the sperm profiles of histone H3 lysine 4 tri-methylation (H3K4me3) and DNA methylation in a representative reference population of 37 men. Our analysis reveals that H3K4me3 is localized throughout the genome and at genes for fertility and development. Remarkably, enrichment is also found at regions that escape epigenetic reprogramming in primordial germ cells, embryonic enhancers, and short-interspersed nuclear elements (SINEs). There is significant overlap in H3K4me3 and DNA methylation throughout the genome, suggesting a potential interplay between these marks previously reported to be mutually exclusive in sperm. Comparisons made between H3K4me3 marked regions in sperm and the embryonic transcriptome suggest an influence of paternal chromatin on embryonic gene expression.


Assuntos
Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Fertilidade/genética , Histonas/genética , Espermatozoides/metabolismo , Sequenciamento Completo do Genoma , Reprogramação Celular/genética , Ilhas de CpG/genética , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Espermatogênese/genética
12.
STAR Protoc ; 2(2): 100602, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34159325

RESUMO

In the field of epigenetic inheritance, delineating molecular mechanisms implicated in the transfer of paternal environmental conditions to descendants has been elusive. This protocol details how to track sperm chromatin intergenerationally. We describe mouse model design to probe chromatin states in single mouse sperm and techniques to assess pre-implantation embryo chromatin and gene expression. We place emphasis on how to obtain high-quality and quantifiable data sets in sperm and embryos, as well as highlight the limitations of working with low input. For complete details on the use and execution of this protocol, please refer to Lismer et al. (2021).


Assuntos
Imunoprecipitação da Cromatina/métodos , Embrião de Mamíferos/efeitos dos fármacos , Epigênese Genética , Espermatozoides/efeitos dos fármacos , Animais , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Masculino , Camundongos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Espermatozoides/metabolismo
13.
Hum Reprod Open ; 2021(1): hoab009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33768166

RESUMO

Male infertility is a global health issue; yet to a large extent, our knowledge of its causes, impact and consequence is largely unknown. Recent data indicate that infertile men have an increased risk of somatic disorders such as cancer and die younger compared to fertile men. Moreover, several studies point to a significant adverse effect on the health of the offspring. From the startling lack of progress in male contraception combined with the paucity of improvements in the diagnosis of male infertility, we conclude there is a crisis in male reproductive health. The Male Reproductive Health Initiative has been organized to directly address these issues (www.eshre.eu/Specialty-groups/Special-Interest-Groups/Andrology/MRHI). The Working Group will formulate an evidence-based strategic road map outlining the ways forward. This is an open consortium desiring to engage with all stakeholders and governments.

14.
BMJ Open ; 11(2): e046311, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568380

RESUMO

INTRODUCTION: The 'Developmental Origins of Health and Disease' hypothesis suggests that a healthy trajectory of growth and development in pregnancy and early childhood is necessary for optimal health, development and lifetime well-being. The purpose of this paper is to present the protocol for a randomised controlled trial evaluating a preconception-early childhood telephone-based intervention with tailored e-health resources for women and their partners to optimise growth and development among children in Canada: a Healthy Life Trajectory Initiative (HeLTI Canada). The primary objective of HeLTI Canada is to determine whether a 4-phase 'preconception to early childhood' lifecourse intervention can reduce the rate of child overweight and obesity. Secondary objectives include improved child: (1) growth trajectories; (2) cardiometabolic risk factors; (3) health behaviours, including nutrition, physical activity, sedentary behaviour and sleep; and (4) development and school readiness at age 5 years. METHOD AND ANALYSIS: A randomised controlled multicentre trial will be conducted in two of Canada's highly populous provinces-Alberta and Ontario-with 786 nulliparous (15%) and 4444 primiparous (85%) women, their partners and, when possible, the first 'sibling child.' The intervention is telephone-based collaborative care delivered by experienced public health nurses trained in healthy conversation skills that includes detailed risk assessments, individualised structured management plans, scheduled follow-up calls, and access to a web-based app with individualised, evidence-based resources. An 'index child' conceived after randomisation will be followed until age 5 years and assessed for the primary and secondary outcomes. Pregnancy, infancy (age 2 years) and parental outcomes across time will also be assessed. ETHICS AND DISSEMINATION: The study has received approval from Clinical Trials Ontario (CTO 1776). The findings will be published in peer-reviewed journals and disseminated to policymakers at local, national and international agencies. Findings will also be shared with study participants and their communities. TRIAL REGISTRATION NUMBER: ISRCTN13308752; Pre-results.


Assuntos
Recursos em Saúde , Telefone , Alberta , Criança , Pré-Escolar , Feminino , Crescimento e Desenvolvimento , Humanos , Estudos Multicêntricos como Assunto , Ontário , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Dev Cell ; 56(5): 671-686.e6, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33596408

RESUMO

A father's lifestyle impacts offspring health; yet, the underlying molecular mechanisms remain elusive. We hypothesized that a diet that changes methyl donor availability will alter the sperm and embryo epigenomes to impact embryonic gene expression and development. Here, we demonstrate that a folate-deficient (FD) diet alters histone H3 lysine 4 trimethylation (H3K4me3) in sperm at developmental genes and putative enhancers. A subset of H3K4me3 alterations in sperm are retained in the pre-implantation embryo and associated with deregulated embryonic gene expression. Using a genetic mouse model in which sires have pre-existing altered H3K4me2/3 in sperm, we show that a FD diet exacerbates alterations in sperm H3K4me3 and embryonic gene expression, leading to an increase in developmental defect severity. These findings imply that paternal H3K4me3 is transmitted to the embryo and influences gene expression and development. It further suggests that epigenetic errors can accumulate in sperm to worsen offspring developmental outcomes.


Assuntos
Anormalidades Congênitas/patologia , Metilação de DNA , Dieta , Embrião de Mamíferos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Histonas/química , Espermatozoides/metabolismo , Animais , Animais Recém-Nascidos , Cromatina/química , Cromatina/genética , Anormalidades Congênitas/etiologia , Anormalidades Congênitas/metabolismo , Embrião de Mamíferos/metabolismo , Epigênese Genética , Feminino , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
16.
Nucleic Acids Res ; 48(20): 11380-11393, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33068438

RESUMO

Advancing the molecular knowledge surrounding fertility and inheritance has become critical given the halving of sperm counts in the last 40 years, and the rise in complex disease which cannot be explained by genetics alone. The connection between both these trends may lie in alterations to the sperm epigenome and occur through environmental exposures. Changes to the sperm epigenome are also associated with health risks across generations such as metabolic disorders and cancer. Thus, it is imperative to identify the epigenetic modifications that escape reprogramming during spermatogenesis and embryogenesis. Here, we aimed to identify the chromatin signature(s) involved in transgenerational phenotypes in our genetic mouse model of epigenetic inheritance that overexpresses the histone demethylase KDM1A in their germ cells. We used sperm-specific chromatin immunoprecipitation followed by in depth sequencing (ChIP-seq), and computational analysis to identify whether differential enrichment of histone H3 lysine 4 trimethylation (H3K4me3), and histone H3 lysine 27 trimethylation (H3K27me3) serve as mechanisms for transgenerational epigenetic inheritance through the paternal germline. Our analysis on the sperm of KDM1A transgenic males revealed specific changes in H3K4me3 enrichment that predominantly occurred independently from bivalent H3K4me3/H3K27me3 regions. Many regions with altered H3K4me3 enrichment in sperm were identified on the paternal allele of the pre-implantation embryo. These findings suggest that sperm H3K4me3 functions in the transmission of non-genetic phenotypes transgenerationally.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Animais , Reprogramação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Embrião de Mamíferos/metabolismo , Ontologia Genética , Loci Gênicos , Histona Desmetilases/genética , Lisina/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas , Espermatócitos/metabolismo
17.
Am J Physiol Regul Integr Comp Physiol ; 319(4): R455-R465, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783688

RESUMO

Hibernators suppress physiological processes when expressing torpor, yet little is known about the effects of torpor on male reproductive physiology. Studies of hibernating mammals suggest that deep torpor negatively impacts spermatogenesis and that transitions between torpor and euthermic arousals increase cellular oxidative stress, with potentially damaging effects on sperm. Here, we hypothesize that variation in torpor expression affects the reproductive readiness of hibernators by impacting their sperm production. To test this, we examined the relationship between torpor expression and spermatogenesis in captive eastern chipmunks (Tamias striatus). We determined torpor depth with temperature data loggers and assessed its relationship with spermatogenesis by examining spermatogenic progression, cell division, sperm counts, sperm maturity, and DNA damage. We show that deep hibernators (high levels of torpor) largely halted spermatogenesis in late hibernation in comparison with shallow hibernators (low levels of torpor), where ongoing spermatogenesis was observed. Despite these differences in spermatogenic state during hibernation, spermatogenic progression, sperm numbers, and maturity did not differ in spring, potentially reflecting similar degrees of reproductive readiness. Interestingly, shallow hibernators exhibited higher rates of DNA damage in spermatogenic cells during hibernation, with this trend reversing in spring. Our results thus indicate that once heterothermy is terminated, deep hibernators resume spermatogenesis but are characterized by higher rates of DNA damage in spermatogenic cells at the seasonal stage when spring mating commences. Therefore, our study confirmed posthibernation recovery of sperm production but also a potential impact of deep torpor expression during winter on DNA damage in spring.


Assuntos
Temperatura Corporal/fisiologia , Hibernação/fisiologia , Sciuridae/fisiologia , Espermatogênese/fisiologia , Torpor/fisiologia , Animais , Dano ao DNA/fisiologia , Metabolismo Energético/fisiologia , Masculino , Contagem de Espermatozoides , Temperatura
18.
J Dev Orig Health Dis ; 11(4): 427-437, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31525320

RESUMO

Prenatal exposure to persistent organic pollutants (POPs) has been associated with the development of metabolic syndrome-related diseases in offspring. According to epidemiological studies, father's transmission of environmental effects in addition to mother's can influence offspring health. Moreover, maternal prenatal dietary folic acid (FA) may beneficially impact offspring health. The objective is to investigate whether prenatal FA supplementation can overcome the deleterious effects of prenatal exposure to POPs on lipid homeostasis and inflammation in three generations of male rat descendants through the paternal lineage. Female Sprague-Dawley rats (F0) were exposed to a POPs mixture (or corn oil) +/- FA supplementation for 9 weeks before and during gestation. F1 and F2 males were mated with untreated females. Plasma and hepatic lipids were measured in F1, F2, and F3 males after 12-h fast. Gene expression of inflammatory cytokines was determined by qPCR in epididymal adipose tissue. In F1 males, prenatal POPs exposure increased plasma lipids at 14 weeks old and hepatic lipids at 28 weeks old and prenatal FA supplementation decreased plasma total cholesterol at 14 weeks old. Prenatal POPs exposure decreased plasma triglycerides at 14 weeks old in F2 males. No change was observed in inflammatory markers. Our results show an impact of the paternal lineage on lipid homeostasis in rats up to the F2 male generation. FA supplementation of the F0 diet, regardless of POPs exposure, lowered plasma cholesterol in F1 males but failed to attenuate the deleterious effects of prenatal POPs exposure on plasma and hepatic lipids in F1 males.


Assuntos
Suplementos Nutricionais , Poluentes Ambientais/toxicidade , Ácido Fólico/administração & dosagem , Inflamação/patologia , Lipídeos/análise , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Recém-Nascidos , Feminino , Homeostase , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
20.
Sci Rep ; 9(1): 13829, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554827

RESUMO

The paternal environment is thought to influence sperm quality and future progeny may also be impacted. We hypothesized that prenatal exposure to environmentally-relevant contaminants impairs male reproduction, altering embryo gene expression over multiple generations. Folic acid (FA) can improve sperm quality and pregnancy outcomes, thus we further hypothesized that FA mitigates the contaminants. Sprague-Dawley F0 female rats treated with persistent organic pollutants (POPs) or corn oil and fed basal or supplemented FA diets, then used to yield four generations of litters. Only F0 females received POPs and/or FA treatments. In utero POPs exposure altered sperm parameters in F1, which were partly rescued by FA supplementation. Paternal exposure to POPs reduced sperm quality in F2 males, and the fertility of F3 males was modified by both POPs and FA. Ancestral FA supplementation improved sperm parameters of F4 males, while the POPs effect diminished. Intriguingly, F3 males had the poorest pregnancy outcomes and generated the embryos with the most significantly differentially expressed genes. Early-life exposure to POPs harms male reproduction across multiple generations. FA supplementation partly mitigated the impact of POPs. The two-cell embryo transcriptome is susceptible to paternal environment and could be the foundation for later pregnancy outcomes.


Assuntos
Poluição Ambiental/efeitos adversos , Ácido Fólico/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/dietoterapia , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Ácido Fólico/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Exposição Paterna/efeitos adversos , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA